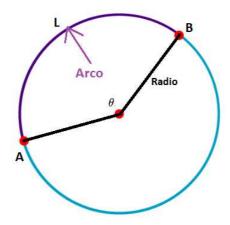
<u> </u>	INSTITUCIÓN EDUCATIVA ANDRÉS PÁEZ DE SOTOMAYOR "Dios, Ciencia y Responsabilidad" 2020		
		Asignatura: Matemáticas 10°	Nota (5pts.)
Longitud de arco y sector circular		Fecha:	
		Docente: Wilmer Peña O.	

Longitud de arco

La longitud de arco ${\bf L}$ subtendido por un ángulo central θ , es la medida del arco del punto ${\bf A}$ al punto ${\bf B}$ que se muestra en la figura.



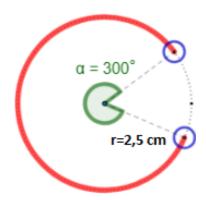
Esta longitud L se calcula mediante la expresión:

$$\boxed{L = \theta \cdot r}$$

donde θ debe estar en radianes.

Ejemplo 1: Calcular la longitud de arco de una circunferencia de 2,5 cm de radio, subtendido por un ángulo de 300° .

Al realizar una representación gráfica del ejercicio, se observa que lo que se pide es la longitud o medida de la curva en rojo.



Por lo tanto, debemos aplicar la fórmula $L = \theta \cdot r$. Sin embargo, observamos que el ángulo que nos dan está en grados y la fórmula exige que esté en radianes.

Para pasar los 300° a radianes realizamos la operación:

$$300^\circ \cdot \frac{\pi}{180^\circ} = \frac{5}{3}\pi$$

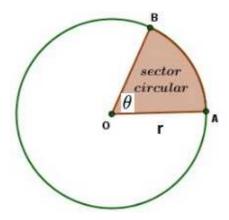
Luego, aplicando la fórmula sería:

$$L = \theta \cdot r = \frac{5}{3}\pi \cdot (2,5) = \frac{25}{6}\pi = 13,08 \ cm$$

Así, la distancia o longitud de arco (curva roja) es de 13,08 cm.

Sector circular

El sector circular en una circunferencia de radio ${\bf r}$ determinado por un ángulo central θ es el que se muestra en la figura.



El área A_{sc} de éste sector circular se puede calcular con las siguientes fórmulas, dependiendo de si el ángulo está en **grados** o en **radianes**.

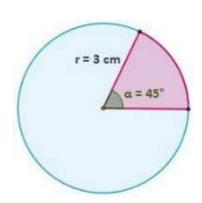
$$A_{sc} = \frac{\theta \cdot \pi \cdot r^2}{360^{\circ}}$$
 si θ está grados

ó

$$A_{sc} = \frac{\theta \cdot r^2}{2}$$
 si θ está radianes

Ejemplo 2: Hallar el área del sector circular de 3 cm de radio, si el ángulo central mide $\alpha=45^{\circ}$.

La representación gráfica de esta situación se observa en la siguiente figura:



Como el ángulo α dado está en grados, usamos la fórmula:

$$A_{sc} = \frac{\theta \cdot \pi \cdot r^2}{360^{\circ}}$$

Al remplazar los valores del radio y el ángulo se obtiene:

$$A_{sc} = \frac{45^{\circ} \cdot \pi \cdot 3^2}{360^{\circ}} = \frac{9}{8}\pi = 3,53 \text{ cm}^2$$

Así, el área del sector circular (área violeta) es de $3,53\ cm^2$.

Otra forma de resolver este ejercicio, es pasar los 45° a radianes y luego aplicar la fórmula

$$A_{sc} = \frac{\theta \cdot r^2}{2}$$

Es decir, pasamos los 45° a rad:

$$\frac{45^{\circ} \cdot \pi}{180^{\circ}} = \frac{1}{4}\pi \ rad$$

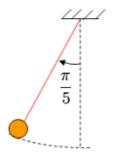
y luego, aplicamos la fórmula:

$$A_{sc} = \frac{\frac{1}{4}\pi \cdot 3^2}{2} = \frac{9}{8}\pi = 3,53 \text{ cm}^2$$

Obtenieno el mismo resultado.

Ejercicios:

1. Un péndulo de reloj mide 75 centímetros y al balancearse se desplaza $\frac{\pi}{5}$ rad a cada lado de la vertical. ¿Cuál es la longitud del arco L que describe?



2. Halle el área del siguiente campo de béisbol si tiene forma el sector circular.

