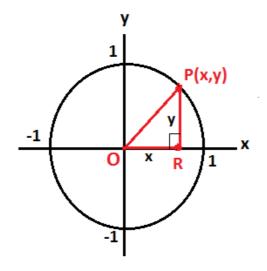
<u> </u>	INSTITUCIÓN EDUCATIVA ANDRÉS PÁEZ DE SOTOMAYOR "Dios, Ciencia y Responsabilidad" 2020		
Tema: Circunferencia unitaria		Asignatura: Matemáticas 10°	Nota (10 pts.)
Nombre:		Segundo Periodo. Fecha:	
		Docente: Wilmer Peña O.	

La circunferencia unitaria

Una circunferecnia unitaria es aquella cuyo centro está en el origen del plano cartesiano y cuyo radio es igual a 1. En la figura se muestra una circunferencia unitaria.



El punto P(x, y) pertenece a la circunferencia unitaria y sus coordenadas x y y corresponden a las medidas de los catetos del triángulo rectángulo ORP.

Si se aplica el teorema de Pitágoras al triángulo ORP se obtiene:

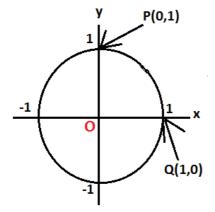
$$h^2=c_1^2+c_2^2$$
 Teorema de Pitágoras
$$1^2=x^2+y^2$$
 En el triángulo la hipotenusa es el mismo radio: $h=r=1$
$$1=x^2+y^2$$

Por lo tanto, la ecuación de la circunferencia unitaria es

$$\boxed{x^2 + y^2 = 1}$$

y todos los puntos P(x,y) que cumplan esta igualdad pertencen a la circunferencia.

Ejemplo 1: En la figura es obvio que los puntos ${\bf P}$ y ${\bf Q}$ pertenecen a la circunferencia unitaria, por lo tanto deben cumplir la igualdad $x^2+y^2=1$



Para el punto P(0,1) se tiene que x=0 y y=1, por lo tanto la ecuación quedaría $0^2+1^2=0+1=1$, se cumple la ecuación.

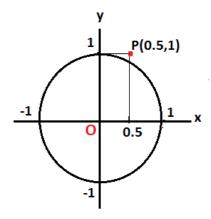
Para el punto Q(1,0) se tiene que x=1 y y=0, por lo tanto la ecuación quedaría $1^2+0^2=1+0=1$, se cumple la ecuación.

Ejemplo 2: Determinar si el punto P(0.5,1), pertenece o no a la circunferencia unitaria.

Para el punto dado se tiene que x=0.5 y y=1, entonces al remplazar en la ecuación $x^2+y^2=1$ se obtiene:

$$0.5^2 + 1^2 = 0.25 + 1 = 1.25 \neq 1$$

Como el resultado no es 1, concluimos que el punto P(0.5,1) no pertenece a la circunferencia unitaria, como se puede ver en la figura:



Ejemplo 3: Hallar la coordenada y del punto $P\left(-\frac{1}{2},y\right)$, que pertenece a la circunferencia unitaria y está ubicado en segundo cuadrante.

Cuando tenemos sólo una coordenada y se pide hallar la otra, el proceso es el siguiente:

$$\left(-\frac{1}{2}\right)^2 + y^2 = 1$$
 Se remplaza la coordenada dada en la ecuación $x^2 + y^2 = 1$
$$\frac{1}{4} + y^2 = 1$$
 Se resuelve la potencia
$$y^2 = 1 - \frac{1}{4}$$
 Se despeja la coordenada faltante
$$y^2 = \frac{3}{4}$$
 Se hace la resta
$$y = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{\sqrt{4}} = \pm \frac{\sqrt{3}}{2}$$
 Se saca la raíz cuadrada positiva y negativa

Como tenemos dos resultados para $y, y = +\frac{\sqrt{3}}{2}$ y $y = -\frac{\sqrt{3}}{2}$, tomamos el positivo ya que nos decían que el punto estaba en el **segundo cuadrante**, es decir, la y es positiva. Por lo tanto, $y = \frac{\sqrt{3}}{2}$ y el punto sería $P\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

Puntos de la circunferencia unitaria y ángulos θ en posición normal

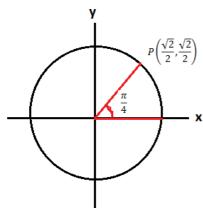
Un punto P sobre la circunferencia unitaria se puede determinar a partir de un ángulo θ en posición normal. De la misma forma, un ángulo θ determina un punto sobre la circunferencia unitaria.

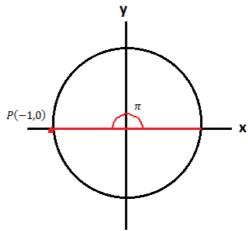
Ejemplo 4: A continuación se muestran dos ángulos en posición normal que determinan puntos sobre la circunferencia unitaria.

a. El ángulo $\theta=\pi/4$ determina el punto

a. Et angulo
$$v = \pi/4$$
 determina et punt $P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

b. El ángulo $\theta = \pi$ determina el punto P(-1,0)

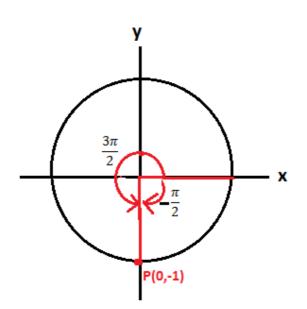




Nota: En el ejemplo anterior, el punto que corresponde con el ángulo $\theta = -\pi$ también sería P(-1,0), sólo que el ángulo se dibujaría en el sentido de las manecillas del reloj. Por lo tanto, un mismo punto puede estar asociado a infinitos ángulos positivos y/o negativos.

Ejemplo 5: Determine dos ángulos asociados con el punto P(0,-1).

Al ubicar el punto P(0,-1) en el plano cartesiano se observa que dos ángulos podrían ser $\theta = -\frac{\pi}{2} y \theta = \frac{3\pi}{2}$



Ejercicios:

1. Determina si el punto $P\left(\frac{1}{2}, -\frac{1}{2}\right)$ pertenece o no pertenece a la circunferencia unitaria.

- 2. Encuentra el valor de x teniendo en cuenta que el punto P(x, 0.8) está en la circunferencia unitaria y está ubicado en el segundo cuadrante.
- ${\bf 3.}$ Dibuja en la circunferencia unitaria un ángulo que que de determinado por el punto P(0,1)
- 4. Dibuja sobre la circunferencia unitaria un punto asociado al ángulo $\theta=135^\circ$