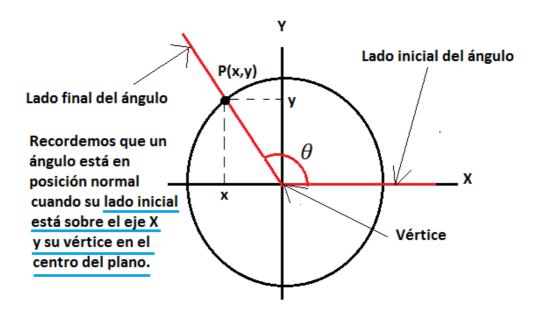
<u> </u>	INSTITUCIÓN EDUCATIVA "Dios, Ciencia		
Tema: Definic	ión de las funciones trigonométricas	Asignatura: Matemáticas 10°	Nota (6 pts.)
Nombre:		Segundo Periodo. Fecha:	
		Docente: Wilmer Peña O.	

Definición de las funciones trigonométricas

Una forma de definir las funciones trigonométricas es a partir de la circunferencia unitaria. Para esto se construye un ángulo θ en posición normal cuyo lado final corte a la circunferencia unitaria en el punto P, como se muestra en la figura:



A partir de las coordenadas x y y del punto P(x,y) se pueden definir las funciones trigonométricas: seno (sen), coseno (cos), tangente (tan), cotangente (cot), secante (sec) y cosecante (csc), así:

$$sen(\theta) = y$$
 $tan(\theta) = \frac{y}{x}, x \neq 0$ $sec(\theta) = \frac{1}{x}, x \neq 0$
$$cos(\theta) = x$$

$$cot(\theta) = \frac{x}{y}, y \neq 0$$

$$csc(\theta) = \frac{1}{y}, y \neq 0$$

El signo de las funciones trigonométricas depende del cuadrante en el que se ubique el punto que determine el ángulo θ .

Por ejemplo, para el ángulo θ de la figura anterior, se observa que el punto P(x, y) tiene coordenada en \mathbf{x} , **negativa** y en \mathbf{y} , **positiva**, por lo tanto, se tendría que el singo de cada función trigonométrica sería:

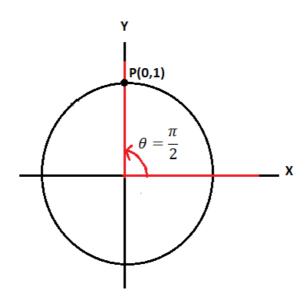
s	$en(\theta)$	$cos(\theta)$	$tan(\theta)$	$cot(\theta)$	$sec(\theta)$	$csc(\theta)$
	+	_	_	_	_	+

En la siguiente tabla se muestra el signo de las funciones trigonométricas según las coordenadas x,y de un punto determinado por un ángulo θ en posición normal.

Cuadrante	Signos de (x, y)	Funciones positivas	Funciones negativas
I	x > 0, y > 0	Todas	Ninguna
II	x < 0, y > 0	$sen(\theta), csc(\theta)$	$cos(\theta), tan(\theta), cot(\theta), sec(\theta)$
III	x < 0, y < 0	$tan(\theta), cot(\theta)$	$sen(\theta), cos(\theta), sec(\theta), csc(\theta)$
IV	x > 0, y < 0	$cos(\theta), sec(\theta)$	$sen(\theta), tan(\theta), cot(\theta), csc(\theta)$

Ejemplo 1: Calcular el valor de las 6 funciones trigonométricas para el ángulo $\theta=\frac{\pi}{2}$ que determina el punto P(0,1) en la circunferencia unitaria.

En la siguiente figura se observa el ángulo y el punto que determina.



Como x = 0 y y = 1 tenemos que:

*
$$sen\left(\frac{\pi}{2}\right) = y = 1$$

*
$$cos\left(\frac{\pi}{2}\right) = x = 0$$

*
$$tan\left(\frac{\pi}{2}\right) = \frac{y}{x} = \frac{1}{0}$$
 =Indefinida

$$* \cot\left(\frac{\pi}{2}\right) = \frac{x}{y} = \frac{0}{1} = 0$$

*
$$sec\left(\frac{\pi}{2}\right) = \frac{1}{x} = \frac{1}{0}$$
 = Indefinida

$$* \csc\left(\frac{\pi}{2}\right) = \frac{1}{y} = \frac{1}{1} = 1$$

Ejemplo 2: Calcular el valor de las 6 funciones trigonométricas para el ángulo $\theta=\frac{\pi}{6}$ que determina el punto $P\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ en la circunferencia unitaria.

Primero se identifican las coordenadas del punto: $x = \frac{\sqrt{3}}{2}$ y $y = \frac{1}{2}$

Luego se utilizan estas coordenadas para calcular el valor de cada una de las funciones trigonométricas:

$$* sen\left(\frac{\pi}{6}\right) = y = \frac{1}{2}$$

$$* \cos\left(\frac{\pi}{6}\right) = x = \frac{\sqrt{3}}{2}$$

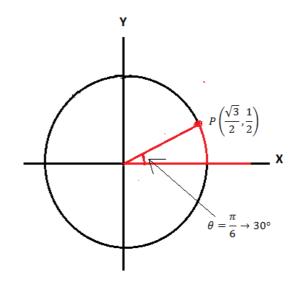
*
$$tan\left(\frac{\pi}{6}\right) = \frac{y}{x} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{3}$$

*
$$\cot\left(\frac{\pi}{6}\right) = \frac{x}{y} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$

*
$$sec\left(\frac{\pi}{6}\right) = \frac{1}{x} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2\sqrt{3}}{3}$$

*
$$csc\left(\frac{\pi}{6}\right) = \frac{1}{y} = \frac{1}{\frac{1}{2}} = 2$$

Observemos que el signo de las funciones trigonométricas es positivo porque el punto P está en el primer cuadrante, como muestra la figura



Ejercicios:

- 1. Calcular el valor de las 6 funciones trigonométricas para el ángulo $\theta = \frac{3\pi}{4}$ que determina el punto $\mathbf{P}\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ en la circunferencia unitaria.
- 2. Complete la tabla con los valores de las funciones trigonométricas para los ángulos llamados cuadrantales que son: $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ y 2π .

θ	$\mathbf{P}(\mathbf{x}, \mathbf{y})$	$\mathbf{sen}(\theta)$	$\cos(\theta)$	an(heta)	$\mathbf{cot}(heta)$	$\mathbf{sec}(\theta)$	$ \mathbf{csc}(heta) $
0	P(1,0)						
$\frac{\pi}{2}$	P(0,1)	1	0	Indefinida	0	Indefinida	1
π	P(-1,0)						
$\frac{3\pi}{2}$	P(0,-1)						

* En el ejemplo 1 se mostró el proceso para el ángulo $\frac{\pi}{2}$, por eso ya se llenó; de la misma forma se hace para el resto.