INSTITUCIÓN EDUCATIVA ANDRES PAEZ DE SOTOMAYOR "Dios, Ciencia y Responsabilidad" 2020 Asignatura: Matemáticas Fecha: 20 de enero de 2020 Docente: Wilmer Peña O.

Son ecuaciones de segundo grado las ecuaciones de la forma

$$ax^2 + bx + c = 0$$
, donde a, b y $c \in \mathbb{R}$, $a \neq 0$

Ejemplos de ecuaciones de segundo grado son las siguientes:

$$2x^{2} + 3x + 4 = 0$$
, $-3t^{2} + 4 = 0$, $5x^{2} = 0$, $y^{2} + 4y = 0$, $\frac{2}{3}x^{2} + 3x - 2 = 0$

Solucionar una ecuación es encontrar el valor o los valores de la incognita, ya sea x, y, t, etc. que satisfagan dicha ecuación.

Observemos que en cada una de las ecuaciones anteriores podemos identificar los valores de $a, b \ y \ c$.

Ecuación	a	b	c
$2x^2 + 3x + 4 = 0$	2	3	4
$-3t^2 + 4 = 0$	-3	0	4
$5x^2 = 0$	5	0	0
$y^2 + 4y = 0$	1	4	0
$\frac{2}{3}x^2 + 3x - 2 = 0$	$\frac{2}{3}$	3	-2

Discriminante de la ecuación

En una ecuación cuadrática $ax^2 + bx + c = 0$ podemos identificar el valor del **discriminante**, el cual está dado por

$$D = b^2 - 4ac$$

- * Si D=0, entonces la ecuación tiene 2 soluciones reales iguales.
- * Si D>0, entonces la ecuación tiene 2 soluciones reales diferentes.
- * Si D < 0, entonces la ecuación tiene 2 soluciones complejas.

Ejemplo 1. Hallar el discriminante de la ecuación $2x^2 + 5x - 10 = 0$.

Como a=2, b=5 y c=-10, entonces

$$D = 5^2 - 4(2)(-10) = 25 - (-80) = 25 + 80 = 105$$

Por lo tanto, como D = 105 > 0 la ecuación tiene 2 soluciones reales diferentes.

Si queremos saber si un número es solución de una ecuación dada, debemos remplazar este valor en la ecuación y analizar si esta se satisface.

Por ejemplo, las soluciones a la ecuación $2x^2 - 3x + 1 = 0$, son x = 1 y $x = \frac{1}{2}$ ya que si remplazamos el valor de x ya sea por 1 o por $\frac{1}{2}$ se tendría,

$$2(1)^2 - 3(1) + 1 = 0$$
 y $2\left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2}\right) + 1 = 0$

Soluciones de la ecuación cuadrática

Para hallar las soluciones de una ecuación cuadrática $ax^2 + bx + c = 0$ debemos tener presente que esta puede ser: completa o incompleta.

Ecuación cuadrática completa: $ax^2 + bx + c = 0$

Ecuación cuadrática incompleta: $ax^2 + bx = 0$ o $ax^2 + c = 0$

Ecuación incompleta de la forma $ax^2 + bx = 0$

Cuando la ecuación tiene esta forma debemos factorizar por el método de factor común, en este caso la \boldsymbol{x}

$$ax^2 + bx = 0$$
$$x(ax + b) = 0$$

Entonces, para que esta multiplicación sea 0, es porque x=0 (primera solución) o ax+b=0, es decir, $x=-\frac{b}{a}$ (segunda solución) la cual se obtiene de despejar la x.

Por lo tanto, las soluciones de la ecuación cuadrática $ax^2 + bx = 0$ son

$$x_1 = 0 \qquad \text{y} \qquad x_2 = -\frac{b}{a}$$

Ecuación incompleta de la forma $ax^2 + c = 0$

En este caso lo único que debemos hacer es despejar el valor de x, es decir,

$$ax^{2} + c = 0$$

$$ax^{2} = -c$$

$$x^{2} = -\frac{c}{a}$$

$$x = \pm \sqrt{-\frac{c}{a}}$$

Por lo tanto, las soluciones de la ecuación cuadrática $ax^2 + c = 0$ son

$$x_1 = \sqrt{-\frac{c}{a}}$$
 y $x_2 = -\sqrt{-\frac{c}{a}}$

Ecuación completa de la forma $ax^2 + bx + c = 0$

Para finalizar, si la ecuación es de la forma $ax^2 + bx + c = 0$ se puede aplicar la fórmula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Esto quiere decir que las soluciones de la ecuación son

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 y $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Veamos algunos ejemplos,

Ejemplo 2. Resolver la ecuación $2x^2 - 4x = 0$

Lo primero que debemos hacer es identificar la forma de la ecuación, esta ecuación es de la forma $ax^2 + bx = 0$, tenemos que a = 2 y b = -4, por lo tanto, las soluciones son

$$x_1 = 0$$
 y $x_2 = -\frac{b}{a} = -\frac{-4}{2} = -(-2) = 2$

Ejemplo 3. Resolver la ecuación $x^2 - 9 = 0$

La forma de la ecuación es $ax^2 + c = 0$, por lo tanto, los valores de a y c son a = 1 y c = -9. Las soluciones son

$$x_1 = \sqrt{-\frac{c}{a}} = \sqrt{-\frac{-9}{1}} = \sqrt{9} = 3$$
 y $x_2 = -\sqrt{-\frac{-9}{1}} = -\sqrt{9} = -3$

Ejemplo 4. Resolver la ecuación $x^2 - x - 2 = 0$

La ecuación $x^2 - x - 2 = 0$ es de la forma $ax^2 + bx + c = 0$, a = 1, b = -1 y c = -2, aplicando la fórmula expuesta anteriormente para este caso, tenemos

$$x_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{1} = \frac{-(-1) + \sqrt{(-1)^{2} - 4(1)(-2)}}{2(1)}$$

$$x_{1} = \frac{1 + \sqrt{(1 - (-8))}}{2}$$

$$x_{1} = \frac{1 + \sqrt{9}}{2}$$

$$x_{1} = \frac{1 + 3}{2}$$

$$x_{1} = \frac{4}{2}$$

$$x_{1} = 2$$

y la segunda solución sería con signo —

$$x_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

$$x_{2} = \frac{-(-1) - \sqrt{(-1)^{2} - 4(1)(-2)}}{2(1)}$$

$$x_{2} = \frac{1 - \sqrt{(1 - (-8))}}{2}$$

$$x_{2} = \frac{1 - \sqrt{9}}{2}$$

$$x_{2} = \frac{1 - 3}{2}$$

$$x_{2} = \frac{-2}{2}$$

$$x_{3} = -1$$

Por lo tanto, las soluciones de la ecuación serán $x_1 = 2$ y $x_2 = -1$.

También podemos tener ecuaciones donde se deban resolver algunas operaciones antes de identificar la forma de la ecuación.

Ejemplo 5. Identificar la forma de la ecuación $5x - x^2 = 10x$

Para identificar la forma de la ecuación debemos igualar a cero la expresión dada pasando los términos a un lado del signo igual.

$$5x - x^{2} = 10x$$

$$5x - x^{2} - 10x = 0$$

$$-5x - x^{2} = 0$$

$$-x^{2} - 5x = 0$$
Pasando el 10x a restar a la izquierda
$$5x - x^{2} = 0$$
Sumando los términos con x
$$-x^{2} - 5x = 0$$
Ordenando

Luego la ecuación es de la forma $ax^2 + bx = 0$ con a = -1 y b = -5. Debemos tener en cuenta que la ecuación $-x^2 - 5x = 0$ se puede escribir como $x^2 + 5x = 0$ y en este caso a = 1 y b = 5 lo cual tambien es correcto.

Para que puedas aprender lo expuesto anteriormente debes realizar cada una de las siguientes actividades en tu cuaderno de ejercicios:

Ejercicios:

1. Completa la tabla

Ecuación	a	b	c	Tipo .
$2x^2 - 3x + 5 = 0$				
$2y^2 - 4 = 0$				
$x + x^2 - 2 = 0$				
$x^2 - 6x = 0$				
$-t^2 + 5t = -10$				

2. Resuelve las ecuaciones cuadráticas siguientes.

a.
$$x^2 - 5x + 6 = 0$$

f.
$$x^2 - 4x = -4$$

b.
$$2x^2 - 7x + 3 = 0$$

g.
$$2x - 3 = 1 - 2x + x^2$$

c.
$$-x^2 + 7x - 10 = 0$$

h.
$$3x^2 + 4x = 0$$

d.
$$x^2 - 16 = 0$$

i.
$$3x - x^2 = 0$$

e.
$$x^2 + x + 1 = 0$$

i.
$$x^2 = 1$$